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Abstract. Soon robots will cooperate with humans in everyday tasks. These robots
must be endowed with social skills so that their behavior will be similar to that of
people. One of these behaviors is navigation: how the robot plans the route and
moves through ubicomp environments. For example, a social behavior during nav-
igation consists of detecting the position of people and evaluating with proxemics
those areas where the robot can move and with what velocity. This work presents
a new controller for the following ability of a socially aware person. The robot is
equipped with RGB-D and laser sensors and navigates through an ubicomp envi-
ronment that provides the person’s position at every moment. The system initially
estimates the person’s position and its interaction regions at a future instant and
then adjusts its path and velocity based on this estimate. Experimental results in
simulated environments are included and discussed as initial results to show the
performance of this proposal. We include a set of social metrics to validate the
proposed results.
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1. Introduction

Social navigation is a topic of enormous interest in the robotics community. How robots
navigate in an environment with people determines their acceptance [1]. Many authors
have focused on how the robot moves and the main factors determining this social aware-
ness. Among them, the path planned by the robot and the velocity of its movement stand
out (see recent review in [2]). In this respect, many authors rely on the use of proxemics
to address these problems of social robot navigation [3,4]. Proxemics studies the spatial
relationship between people during an interaction [5]; more specifically, proxemics can
help us define those regions where people may feel uncomfortable during robot navi-
gation. Thus, if we define these regions, we can introduce parameters in our navigation
algorithms that improve their social behavior [4].

This paper focuses on a typical problem in many social robotics applications: the
person-following task. In this behavior, a human user walks in front of the robot, and the
robot has to follow the user along the path (see Fig. 1a). This behavior must consider the
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(a) (b)

Figure 1. Graphical description of the person-following behavior for social robots; Navigation must take into
account personal and interaction spaces; b) An asymmetric Gaussian defines personal spaces (intimate, per-
sonal, social, and public).

robot’s position from the person, the velocity, and the path planning itself. In addition,
it must solve the problem of detecting and tracking the person, estimating its movement
and the velocity at which the robot moves. This last is not a simple task and requires the
combined use of different agents ranging from perception to navigation [3].

This proposal presents our ongoing work for human-following behavior. As the main
novelty, our algorithm uses the theory of proxemics to compute: i) the path that best
fits the expected behavior of the robot; ii) the linear and rotational velocity of the robot
controller; iii) the future position of the person at the instant when the robot replans
its path. All these novelties are integrated within the SNAPE framework [6] and the
CORTEX cognitive architecture [7]. Our solution is agnostic of the implementation and
may be feasible to implement in other robotics frameworks.

The SNAPE framework, proposed in [6], describes a complete system for socially
aware robot navigation. In our approach, perception agents compute, around people, per-
sonal interaction spaces based on proxemics theory. These spaces are defined as asym-
metric Gaussians (see Fig. 1b) and take into account interactions between two or more
persons from sums of Gaussians. We use this information to plan the robot’s path. In
addition, we modify the robot controller according to these regions and how they evolve
in time. Thus, the robot’s velocities will consider these spaces to improve its acceptance.

The structure of this paper is as follows: after a brief summary of the state-of-the-art
in Section 2, Section 3 summarizes the SNAPE framework and the CORTEX cognitive
architecture. Section 4 describes the person-following algorithm proposed in this paper.
Experimental results are described in Section 5, and the main conclusions in Section 6.

2. Related work

The future generation of robots must interact with people just as humans would. Endow-
ing the robot with social behaviors to enhance these human-robot interactions is a chal-
lenge many authors currently address. In particular, person-following skill is a part of
these Human-Robot Interaction (HRI) that has more research in the autonomous robot
navigation field. A person-following robot aims to follow a moving human target in three
different positions: behind, to the side, and in front [8]. Our paper initially focuses on fol-
lowing a human user in front of the robot, adapting the robot’s velocities to the personal
interaction spaces defined by the proxemics [3].
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The approach to the human tracking problem involves solving three specific issues:
the robot hardware mechanism, the tracking of the person of interest (i.e., leader), and
the person-following algorithms that impact the robot controller. A differential base is
the most common solution in most of today’s robots regarding the hardware mechanism
[8,9,10]. This platform facilitates the person’s following by turning quickly in all direc-
tions. However, omnidirectional robots have been growing due to their smooth and non-
invasive movement [11,12]. We present a person-following solution for a specific differ-
ential mobile platform, although its extension to any other robot is immediate. The main
novelty, the use of proxemics for the definition of interaction spaces, can be applied to
any other controller.

Human detection and tracking algorithms are critical components in these person-
following robots (see interesting reviews in [13,14]). Some systems rely exclusively on
the robot’s sensors, such as lasers or RGBD cameras, using data fusion algorithms and
classical tracking methods (e.g., Kalman filters or particle filters) or based on neural
networks [15,16]. Other techniques use sensors arranged by the environment, which are
integrated with those of the robot itself to track the person [17]. Our proposal does not
address this issue. For the experiments, we assume that the person’s position is known
fusing different sensors readings located in the environment and the own robot.

The last of the problems, the person-following controller, is also a complex problem
that concerns the robot’s movement through the environment. Many algorithms attempt
to keep this distance fixed by simply modifying the forward and rotational velocities as a
function of the distance to the person. For example, in the work presented in [10], the au-
thors used an algorithm based on virtual spring model to mitigate the difference of move-
ment between the human and the mobile robot. Tarmizi et al., [8] summarizes some of
the classical solutions for motion controller. In [18], the authors describe a novel system
for dynamic environments, which uses nonlinear model predictive control to optimize
the robot’s trajectory. In our article, we include as a main novelty human-aware naviga-
tion to follow the person, keeping distances according to the personal spaces of interac-
tion. Therefore, our system improves the current ones by considering social connotations
during the robot’s displacement.

3. Overview of the SNAPE framework and CORTEX cognitive architecture

The solution proposed in this article uses the CORTEX robotic cognitive architecture
[7]. This architecture comprises software agents that perform specific robot tasks, such
as human detection, face recognition, human-robot interaction, path planning, or naviga-
tion. All these agents share information through a distributed working memory, known
as Deep State Representation (DSR) [19], which is accessible to all agents. The informa-
tion is consistent, quickly updated, and easily scalable. Fig. 2 shows an example for a use
case of the navigation of an autonomous robot in an environment with people. The nodes
and arcs show all agents’ information. They include geometric and symbolic data (e.g.,
the person in the graph has the symbolic attribute ’leader’ and its position and orientation
concerning the robot).

Our proposed person-following robot uses the SNAPE navigation framework [6].
This framework covers the whole spectrum: from the robot’s surrounding perception to
behavior planning. SNAPE is composed of five layers which are defined as follows:
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Figure 2. Deep State Representation view associated with the environment on the right. The robot and the
person (leader) have symbolic ’in’ links, indicating that both are in that room. Other symbolic links represent
various situations (e.g., accessible or has). The nodes also have geometric and symbolic information.

• Perception layer. This low-level layer gains access to the sensors’ data deployed
in the environment, including the robot’s own devices. This layer comprises spe-
cific agents, from laser sensors or RGB-D cameras to audio sensors. The agents
dump the information on the DSR, and other agents process it to, among other
functions, fuse the measurements and obtain an estimation of the people pose in
the environment.

• Social layer. Once the architecture detects the people’s location, this layer gen-
erates a social map of the environment. A social map consists of a replica of the
free space map of the robot’s surrounding where social information is added. In
our case, proxemics theory defines regions (intimate, personal, social, and public)
that modify the original map with different costs. First, we start with a free space
map that identifies the obstacles in the environment. This map is modified to add
personal spaces for interaction. In the case of a single person, this space is mod-
eled by contour lines of an asymmetric Gaussian. In the case of interacting per-
sons, the model is based on a sum of Gaussians. By modifying the parameters of
the Gaussian, we can adjust the function to different cultures and social contexts.
Formally, the robot’s environment is modeled by the grid G(N,E) of n cells,
evenly distributed in the space. Each cell ni has two different parameters: accessi-
bility, an, and weight, wn. The accessibility of a the ni cell is a flag variable whose
value is 1 if the space is occupied and 0 if it is free. wi, indicates the weight of
the cell. Low values of wi indicates that the robot should follow this route and
elevated values of wi advise not to use this route if there are other path with low
weight. In the beginning, all boxes have the same weight 1. Later, G is actualized
to add personal spaces around people, considering the type of social interaction:
public, social, personal, and intimate. The social map obtained, G′(N,E), also
includes all the interaction spaces [3].

• Navigation layer. This layer is the core of the algorithm presented in this paper.
The social map is used in this layer for several actions aimed at robot navigation.
The ultimate goal is to have human-aware navigation, and this involves modifying
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Figure 3. Top view of the socially awareness person-following problem in a dynamic environment.

the routes to respect personal spaces. In addition, it must modify robot velocities
and add consecutive targets to keep the person in the robot’s focus during the fol-
lowing task. Our solution uses a classical global planning algorithm, followed by
an elastic-band based path optimization. The robot controller modifies the veloci-
ties based on the interaction spaces defined by proxemics theory. This navigation
layer will be described in detail in Section 4.

• HRI interaction layer. This layer is in charge of starting and keeping dialogues
with people in order to achieve the navigation goal. Although in our proposal we
do not contemplate human-robot interaction, initiating dialogues with the person
if the robot has lost the person’s position is an option to be considered in future
implementations.

• Planning layer. The last layer, more deliberative, is responsible for planning all
the actions and their order of execution to achieve the defined objective. In our
proposal, this layer is responsible for defining the mission of following the leader
and activating each of the agents responsible for detecting and following the per-
son, planning the route, and navigating the environment in a safe and socially
accepted way.

4. Person-following robot’s behavior based on Proxemics

The person-following behavior we propose in this paper acts on the controller of a
differential-drive mobile robot, modifying its forward and rotational velocities. The ap-
proach’s main goal is to maintain a social distance between the robot and people in the
environment, following a leader to an unspecified target. The robot is kept at a distance
dr from leader, such that dr ≥ dmin, with dmin being the personal distance. Unlike other
algorithms, our main contribution is that the robot follows the person with social aware-
ness, i.e., while navigating, the robot moves around, avoiding disturbing people during
its trajectory. Fig. 3 depicts the person-following problem by a top view representation
for modeling purposes. Next, we define the pipeline of our approach:

1. Person detection and tracking. In our system, we assume that the CORTEX
architecture addresses this problem. Given a set of sensors deployed by the en-
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vironment and a data fusion algorithm, the position and orientation of the leader
are accessible through the DSR. Let ht(x,y,α) be the position and orientation of
the leader at time instant t. This position is referenced according to the robot’s
reference system (the edge in the DSR has the rotation R and translation T ma-
trices to transform the person’s pose into the robot’s reference frame). Let H
be, in addition, the set of all persons detected by the CORTEX architecture,
H = {hl ,h1,h2, ...,hn}. Each person hn is defined by its position and orientation,
hn = (x,y,α)n. We assume that the tracking algorithm correctly discriminates the
leader from the rest of the people in each frame.
Instead of working with the vector H, our algorithm estimates the future people
pose, He to better adapt to these dynamic environments. For this purpose, first we
calculate the velocity vector for each person around the robot. Let ht

n, and ht+Δt ,
be the positions of human n in two instants, then the velocity vector is defined as:

�vhn =
ht+Δt

n −ht
n

Δt
(1)

which is characterized by its modulus | �vhn | and phase βvhn
. Then, the estimated

people pose at a particular instant of time Δt ′, he
n is obtained from this informa-

tion.
2. Social mapping estimation and building. This step aims to use the estimation

of people’s position to define those areas where robot navigation should be pe-
nalized or prohibited. First, we compute the personal interaction spaces for each
he

n ∈ H and then modify the grid G [3]. Each person he
n is modeled with an asym-

metric Gaussian of the form:

ghe
n
(x,y) = e−(k1(x−xn)

2+k2(x−xn)(y−yn)+k3(y−yn)
2) (2)

where k1, k2 and k3 are coefficients used to considering the rotation of the func-
tion βn, defined in [3].
The next step is to create groups of people whenever they interact and then de-
fine the interaction spaces in these cases. Our clustering algorithm is based on a
Gaussian mixture that finds k region of interactions between people according to
a proxemics-dependent function [3]. This set of regions defines where navigation
is to be penalized or prohibited. Thus, the final step is to update the free space
graph G values.
The contours of these forbidden areas are defined by k polygonal chains (i.e.,
polyline) Lk = {l1, ..., lk}, where k is the number of interaction regions. Each
curve li is described as li= {a1, ...,am}, being ai = (x,y)i the vertices of the curve,
which are located in the contour of the region. The algorithm dynamically ad-
justs the number of vertices, m. In our proposal, contours consider the distances
defined by the proxemics: intimate, personal, social, and public, and are defined
according to the distances concerning the person’s center. The availability ai of
all the nodes Ni ∈ G contained in the space formed by Lintimate

k is set to occupied,
ai = occupied. This means that the robot will not be able to invade this space, as
it would disturb the person. For personal and social spaces, the availability of the
nodes of the graph will not be modified, but its cost will be changed. The cost ci
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of all the nodes ni ∈ G, contained in the space formed by Lpersonal
k and Lsocial

k are
modified, this cost being higher in the personal area than in the social area. The
public space will be the rest of the graph whose costs remain unchanged.

3. Social Path planning. The classical Dijkstra algorithm is employed to determine
the shortest path P =

{
p1, p2, ...,he

l

}
between an initial position and a target (last

leader’s position estimate) to which the robot must follow. Given the robot’s ori-
gin, the algorithm calculates the cost from this point to the target node, taking
into account the cost of the nodes in G′. The cost of a path is the sum of the cost
of the nodes that compose it. This path P is updated each time the robot visits
one of the nodes pi of the trajectory, eliminating this point from the trajectory
and adding a new target that coincides with the new estimated position of the
leader, he

l . The global planning algorithm is executed each time a new position
is inserted so that the social path is continuously computed, avoiding invading
personal interaction spaces.
Once the global path is planned, the trajectory responds to the dynamic changes
according to an elastic band algorithm [6]. For each point pt

i on the trajectory,
the laser sensor readings define at this point a repulsive force fr that is related
to the distance from the nearest object. At the same time t, the position of the
leader generates an attractive force fa on pi. The combination of both forces
dynamically transforms the position of each point pt+1

i in the robot’s trajectory
as:

pt+1
i = pt

i + fr + fa (3)

4. Person-following controller. The last step is to calculate the appropriate forward
and rotational speeds, v f and vr, respectively. Given the trajectory P, the robot
must move between two consecutive points (pi, pi+1). In addition, the robot’s ve-
locities must be such that it can follow the person adequately. First, the controller
described in this article finds the rotational velocity by considering the leader’s
pose estimate in its reference frame. Then, it calculates the forward velocity, also
considering the personal interaction space. We define the gain κvr , which modi-
fies the rotational velocity. The robot initially aligns itself with the next point on
the trajectory and then adjusts its forward speed. This forward velocity is multi-
plied by a gain defined by a sigmoid between 0 and 1 :

κv f = 2/(1+ e(d
t
h−dmin·λ ))−1 (4)

where dt
h is the distance to the leader, dmin is the distance at which the robot must

stop and the gain λ is associated with the slope of the sigmoid.

5. Experimental results

This section describes the experiments that validate the proposed person-following be-
havior. We first describe the robotic platform and the environment used in our tests. Then
we outline the simulated scenarios: i) the robot’s navigation following a person in a small
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(a)

(b)

Figure 4. a) First scenario. From left to right: initial set-up, social map, and path optimized by the elastic band
algorithm. In this case, there are no other people in the environment; b) First scenario with people around the
robot’s trajectory.

environment with and without people, and ii) a complex scenario where people move
around the robot’s trajectory. In both cases, we will evaluate the robot’s socially aware
behavior considering the set of metrics defined in [3]. These metrics are (i) average min-
imum distance to a human during navigation, dl

min; (ii) Cumulative Heading Changes,
CHC; (iii) and personal space intrusions, Ψ. First, parameter tuning (e.g., costs of inti-
mate, personal, public, and social spaces) is performed by optimizing these specific so-
cial navigation metrics in controlled environments. The experiments are carried out on a
PC with the following characteristic: Intel Core i7 processor with 8Gb of DDR3 RAM
and Ubuntu GNU/Linux 20.102.

5.1. Simulated scenarios

The first scenario, simulated with the Coppelia simulator software, is a 65m2 apartment
with a living room, open kitchen, and a corridor. In the simulated ubicomp environ-
ment, we have installed different RGBD cameras. The social robot is a directional base
equipped with an RGBD camera. For people detection, we have used the CORTEX ar-
chitecture. We have used the SNAPE framework in its classical version for navigation,
which uses a classical Elastic Band algorithm to optimize the robot’s path. In the begin-
ning, leader is placed in the environment, and we perform two tests, one without more
people in the environment (Fig. 4a) and the other with a person walking in the apart-
ment (Fig. 4b). From left to right, we present the initial set-up, the path optimized by the
classical elastic band algorithm, and, finally, the trajectory optimization with the social
elastic band.

The second scenario is a larger environment, consisting of five rooms and several
corridors and furniture distributed throughout the different rooms (see Fig. 5a and Fig.
5b). The experiments were conducted in a similar way to those described above. Once the
leader walks, the person-following behavior begins. The robot navigates socially through
the environment, adapting its speed and trajectory.

The results of our approach are shown in Table 1, where we represent the behavior of
the robot during navigation in all cases. As we can observe, both the CHC values and the

2Readers can find a link to all the experiments in the video: https://youtu.be/DwhXyYoINA4
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(a)

(b)

Figure 5. a) Second scenario. From left to right: initial set-up, social map, and path optimized by the elastic
band algorithm. In this case, there are no other people in the environment; b) second scenario with people
around the robot’s trajectory.

Table 1. Result of the navigation experiment shown in Figs. 4a-5b
Fists scenario Second scenario

Parameter test1 test2 test1 test2

dl
min (mm) 1757.13 2676.2 2615.82 3113.31

CHC 7,13 9.46 15.9965 15.7323
Ψ (Intimate) (%) 0 0 0.00 0,00
Ψ (Personal) (%) 0 7.23514 0.00 0.315
Ψ (Social) (%) 0 18.6047 0.00 4.50161
Ψ (Public) (%) 100 74.1602 100.00 95.18

average distance to leader dmin take acceptable values according to the bibliography. The
heading changes are low, and dl

min are never below the dmin (set in our experiments to
one meter). The Table 1 also shows how the percentage of time Ψ that the robot invades
intimate and personal spaces is zero, and most of the time, the robot navigates in the
social and public regions.

6. Conclusions and future works

Human-aware person-following in populated environments is a complex problem that
is currently unsolved. The present work focuses on using proxemics theory to i) plan a
socially accepted route during person tracking; and ii) design a differential robot con-
troller that applies forward and turning speeds as a function of distance to the leader and
their personal spaces. The SNAPE framework provides the basis for person-following
behavior. The CORTEX cognitive architecture facilitates data integration from differ-
ent sources in a ubiquitous environment. We have successfully validated the algorithm
in simulated environments. All software is open-source and available to the scientific
community.

Future work is aimed at testing this following-person approach in real environments
with people. In addition, we will work on the person tracking system with cameras dis-
tributed throughout the environment.
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